Evaluation of the Two Alternatives

Criteria	Objectives	Indicators	Alternative A Signalized intersections	Alternative B Roundabouts at Rothbourne Kittiwake/Echowoods	Notes
Corridor Land Use and Access	A road corridor that enables growth, development and business prosperity	I. maximization for all-movement access directly to abutting lots in the shor-term	0		With Alternative B, some lots near the roundabouts would have diminisished access
		II. maximization for all-movement access directly to abuting lots in the long-term	-		Both Alternatives have the possibility of the two-way left-turn lanes being replaced with medians should conditions warrant
Land Implications	A road corridor that minimizes the effects on adjacent private properties	I. minimization of amount of Right-of-Way acquisition required at mid-block locations	0	O	With Alternative B, some lots near the roundabouts would have diminished access
		II. minimization of amount of Right-of-Way acquisition required at intersections	-		Alternative B requires a greater ROW widening at the roundabout corners
		III. minimization of impact on functionality/use of the lot (on-site parking, front yards)	-		Alternative B creates some challenges in maintaining existing land use and site configuration at the roundabout corners
Building Implications	A road corridor that minimizes the effect on individual buildings and on-site private wastewater systems	I. minimization of the requirement to alterddemolish existing or proposed buildings			Alternative B may require the demolition of buildings at roundabout corners if sites cannot be rearranged in a functional manner
		II. minimization of impact on on-site private wastewater systems			Alternative B has greater likelihood of displacing systems at the roundabout corners
Visual Environment	A road corridor with a pleasing visual environment	I. maximization of attractiveness of the corridor			Alternative B has greater potential for greening and attractiveness at the roundabouts
Sustainable Landscaping	A road coridor that allows for green design features	I. maximization of space for trees and landscaping			Alternative B provides additional space for landscaping in the roundabout islands
Noise	A road corridor with lower noise levels	I. maximization of separation between noise sources and receivers			Alternative B brings the noise generating roadway closer to adjacent buildings at the roundabout corners
Vibration	A road corridor with lower vibration levels experienced by adjacent structures	1. maximization of separation between vibration source (primarily trucks and buses) and receivers			Alternative B brings the noise generating roadway closer to adjacent buildings at the roundabout corners
Outdoor Air Quality	A road corridor with reduced contributions to ambient air quality criteria	I. maximization of fuel efficient driving behaviour			Both alternatives are projected to have similar fuel consumption and emission
Life Cycle Costs	A road that is affordable to construct and maintain	I. minimization of capital infrastucture cost	-		Altemative Bis 82.652 M morelless expensive
		II minimization of road and infrastucture maintenance and replacement cost			Alternative B has a slightly lesser maintenance and replacement cost as fewer traffic signals are required
		III. minimization of property acquisition cost	,		Altemative B has a greater land acquisition cost
Pedestrian Convenience, Comfort, and Safety	A road corridor with appropriate pedestrian capacity, safety and comfort	I. maximization of separation of pedestrian route from vehicle travel lanes	,		Both alternatives achieve good separation of pedestrians from travel lanes
		II. minimization of length of travel	-		Pedestrinns sing roundabout rossings have a longer distance to travel
		III. minimization of crosswalk length		O	Crosswalks at the roundabouts are include splitter islands and hence shorter individual crosswalks

Evaluation of the Two Alternatives

Criteria	Objectives	Indicators	Alternative A Signalized Intersections	Alternative B Roundabouts at Rothbourne, Kittiwake/Echowoods	Notes
Cycling Convenience, Comfort, and Safety	A road corridor where cyclists are well-separated from moving vehicles	I. maximization of horizontal and/or vertical separation of cyclists from vehicles			Both alternatives achieve good separation of cyclists from travel lanes (on multi-use pathways)
		II. maximization of a comfortable environment for cyclists of all ages and all abilities			Both alternatives result in a very comfortable environment for cycling (on multi-use pathways)
		III. minimization of length of travel			Cycisists using roundabout crossings have a longer distance to travel
		IV. maximization of safety of left turn movements			Both alternatives require cyclists using the multi-use pathway to perform a two-stage crossing
Universal Accessibility	A road corridor that can be used by all users of all abilities	I. provision of sidewalks with clear zone not less than 1.8 m			Both alternatives have sufficient clear walking width
		II. provision for street design features that enable barrier free movement			Both aleeratives provide barier free movement
		III. maximization of protection at crossings			Alternative A provides protected phase visible and audible crosswalk signals
Bus Transit Travel Time and Reliability	a road corridor where passenger vehicles, emergency service vehicles, and trucks move safely and efficiently through the corridor	I. maximization of consistency of travel time along the corridor		\bigcirc	Altemative B results in slighty ymproved reliability
Motor Vehicle Safety and Performance	a road corridor where passenger vehicles, emergency service vehicles, and trucks move safely and efficiently through the corridor	I. maximization of vehicle Level of Service at intersections			Alternative A provides slighty improved level of service (LOS) for vehicles at Kittiwake intersection. Similar Los at Rothbourne
		II. minimization of roadway width (curb to curb width) to increase friction and reduce travel speed			Both alternatives have the same curb to curb width in mid-block locations along the corridor
		III. maximization of safety of leff turning movements at intersections			Alternative B provides for less-vulnerable left-turn movements at the two roundabout intersections
		IV. maximization of safety of left turning movements at mid-block			Both alteratives provide for left-turns in mid--locklocations
		V. maximization of safety of left turning movements at mid-block in long-term			Both alternatives have the possibility of the median needing to be filled in over the long term to address safety issues that may emerge
		VI. minimization of duration of travel time along the corridor			Both alternatives have similar projected travel times through the entire corridor. Overall intersection spacing and trafic patterns result in good progression opportunities using traffic signals

